Approuches to caruative

- parallel trougport oround S^{2}
- gin nomal coorels
- (utegrability

Recall Thum Guss corvative 'is intrinsic. Another way to see this:
Parallel troukpot

$$
\begin{aligned}
& \text { troukpot } \\
& \nabla_{2 x} W=0 \quad \text { i.e. } \pi \bar{\nabla}_{2 x} \omega=0 \quad \omega+C^{\infty}\left(\gamma_{\gamma}^{+T S}\right)
\end{aligned}
$$

Qunt Equen for torgent surfues.
bie $\nabla=\pi(\bar{\nabla})$ so equalif π is the sone.

Ex Latitude tone of porere

How to frige \measuredangle ?
$2 \pi-\theta$

$$
l\left(x_{0} r\right)=2 \operatorname{ar} \sin \alpha \quad \alpha=\frac{\pi}{2}-\phi
$$

I Us O : conneation in von-commoting of $2^{\text {ud }}$ deriveotinc.

Dfn $F E$ is a do/m and ∇ 'is a counettion on E, then the carrature Ω of ∇ is the $\operatorname{Eul}(\theta)$-valued 2 -form

$$
\Omega^{\nabla}(x, r) e=\nabla_{y} \nabla_{y} e-\nabla_{y} \nabla_{x} e-\nabla_{r x i \zeta} e
$$

- checte 2-samm (i.e. checte $=0$ \&o trivial coucestion)

Calc is $A \in \Omega($ Eude)

$$
\begin{aligned}
\Omega_{i j}^{n+t}= & \left(\nabla_{i}+A_{i}\right)\left(\nabla_{j}+A_{j}\right) e-\left(\nabla_{j}+A_{j}\right)\left(\nabla_{i}+A_{i}\right) e \\
= & \nabla_{i} \nabla_{j}-\nabla_{j} \nabla_{i} e \\
& +\nabla_{i}\left(A_{j} e\right)-A_{j} \nabla_{i} e \\
& -\nabla_{j}\left(A_{i} e\right)+A_{i} \nabla_{j} e \\
& +\left(A_{i} A_{j}-A_{j} A_{i}\right) c \\
= & S^{\nabla}+\left(\nabla_{i} A_{j}-\nabla_{j} A_{i}+\left[A_{i}, A_{j}\right]\right) e
\end{aligned}
$$

Thun E has a local srowe E-

$$
185 \quad \Omega^{8}=0
$$

T Locully, $\nabla=\partial+A$

$$
\Omega^{0}=2_{i} A_{j}-\partial_{j} A_{i}+\left[A_{i}, A_{j}\right]
$$

Recall (lesture 17) thim is the $[]=$,0 Rar vecter siedls

$$
\partial_{i}=F_{i}^{a} A_{i c}^{b} \frac{\partial}{\partial F_{i}^{a}}+\frac{\partial}{\partial x^{i}}
$$

on $\mathbb{R}^{m} \times G L_{r} \mathbb{R} \quad \perp$

If $\epsilon=T M$, ve urite $\Omega=R$ $S_{i j}{ }^{a}=R_{i j}{ }^{k}{ }^{k}$

$$
\nabla_{i} \nabla_{j} \partial_{l}-\nabla_{j} \Pi_{i} \partial_{l}=\alpha_{r} R_{i j}^{k}
$$

Thum $R \equiv 0 \Leftrightarrow M$ is bcally isouetore of R^{u} τ Rf $\Rightarrow T M=\mathbb{R}^{n}, T=$ d by lesir-Ciuna tum

PF E Let ϵ_{i} be a flat frove, θ^{i} dual frove.
$l\left\langle E_{i}, E_{j}\right\rangle=0$ ble untric
$d \theta^{i}(x, i)=\operatorname{Al}\left(\nabla \theta^{i}\right)$ by hur asiny torsion. Rure

$$
=0
$$

\Rightarrow integrate to coords g^{i}.
Metrien tenas in thene coords is $\delta_{i j}$. J

